Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.10.22280850

ABSTRACT

Cancer patients are at high risk of severe COVID-19 with high morbidity and mortality. Further, impaired humoral response renders SARS-CoV-2 vaccines less effective and treatment options are scarce. Randomized trials using convalescent plasma are missing for high-risk patients. Here, we performed a multicenter trial (https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE) in hospitalized patients with severe COVID-19 within four risk groups (1, cancer; 2, immunosuppression; 3, lab-based risk factors; 4, advanced age) randomized to standard of care (CONTROL) or standard of care plus convalescent/vaccinated anti-SARS-CoV-2 plasma (PLASMA). For the four groups combined, PLASMA did not improve clinically compared to CONTROL (HR 1.29; p=0.205). However, cancer patients experienced shortened median time to improvement (HR 2.50, p=0.003) and superior survival in PLASMA vs. CONTROL (HR 0.28; p=0.042). Neutralizing antibody activity increased in PLASMA but not in CONTROL cancer patients (p=0.001). Taken together, convalescent/vaccinated plasma may improve COVID-19 outcome in cancer patients unable to intrinsically generate an adequate immune response.


Subject(s)
Neoplasms , COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.14.22270168

ABSTRACT

Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. A booster vaccination with MVA-MERS-S is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n=1) and the S2 subunit (n=3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials. One Sentence Summary A late booster vaccination with the vector vaccine MVA-MERS-S against MERS-CoV is safe and significantly increases humoral immunogenicity including responses to four IgG epitopes.


Subject(s)
Coronavirus Infections , Encephalomyelitis, Acute Disseminated
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.20.22269599

ABSTRACT

Background The SARS CoV-2 pandemic remains a worldwide challenge. The CRIT Cov U pilot study generated a urinary proteomic biomarker consisting of 50 peptides (COV50), which predicted death and disease progression. Following the interim analysis demanded by the German government, the full dataset was analysed to consolidate findings and propose clinical applications. Methods In eight European countries, 1012 adults with PCR-confirmed COVID-19 were followed up for death and progression along the 8 point WHO scale. Capillary electrophoresis coupled with mass spectrometry was used for urinary proteomic profiling. Statistical methods included logistic regression, receiver operating curve analysis with comparison of the area under curve (AUC) between nested models. Hospitalisation costs were derived from the care facility corresponding with the Markov chain probability of reaching WHO scores ranging from 3 to 8 and flat-rate hospitalistion costs standardised across countries. Findings The entry WHO scores were 1-3, 4-5 and 6 in 445 (44,0%), 529 (52,3%), and 38 (3,8%) patients, of whom 119 died and 271 progressed. The standardised odds ratios associated with COV50 for death were 2,44 (95% CI, 2,05-2,92) unadjusted and 1,67 (1,34-2,07) if adjusted for sex, age, body mass index, comorbidities and baseline WHO score, and 1,79 (1,60-2,01) and 1,63 (1,40-1,90), respectively, for disease progression (p<0,0001 for all). The predictive accuracy of optimised COV50 thresholds were 74,4% (95% CI, 71,6-77,1) for mortality (threshold 0,47) and 67,4% (64,1-70,3) for disease progression (threshold 0,04). On top of covariables and the baseline WHO score, these thresholds improved AUCs from 0,835 to 0,853 (p=0,0331) and from 0,697 to 0,730 (p=0,0008) for death and progression, respectively. Of 196 ambulatory patients, 194 (99,0%) did not reach the 0,04 threshold. Earlier intervention guided by high-risk COV50 levels should reduce hospital days with cost reductions expressed per 1000 patient-days ranging from MEuro 1,208 (95% percentile interval, 1,035-1,406) at low risk (COV50 <0,04) to MEuro 4,503 (4,107-4,864) at high risk (COV50 above 0,04 and age above 65 years). Interpretation The urinary proteomic COV50 marker is accurate in predicting adverse COVID-19 outcomes. Even in mild-to-moderate PCR-confirmed infections (WHO scores 1-5), the 0,04 threshold justifies earlier drug treatment, thereby reducing hospitalisation days and costs.


Subject(s)
COVID-19 , Death
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-904738.v1

ABSTRACT

In a cross-sectional analysis, we have identified a high prevalence of respiratory muscle dysfunction in persistently symptomatic patients after COVID-19 (‘Long COVID’). Respiratory muscle impairment in these patients was associated with exercise-induced deoxygenation, impaired exercise tolerance, activity and functional outcomes after COVID-19.


Subject(s)
COVID-19 , Respiratory Paralysis
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20165936

ABSTRACT

Objective: To assess the effectiveness of multimodal infection control interventions in the prevention of SARS-CoV-2 infections in healthcare professionals. Design: Sequential follow-up study. Setting: Largest tertiary care centre in northern Germany. Participants: 1253 employees of the University Medical Center Hamburg-Eppendorf were sequentially assessed for the presence of SARS-CoV-2 IgG antibodies at the beginning of the covid-19 epidemic (20 March - 9 April), one month (20 April - 8 May), and another two months later (22 June - 24 July). Of those, 1026 were healthcare workers (HCWs) of whom 292 were directly involved in the care of covid-19 patients. During the study period, infection control interventions were deployed, those included i) strict barrier nursing of all known covid-19 patients including FFP2 (N95) masks, goggles, gloves, hoods and protective gowns, ii) visitor restrictions with access control at all hospital entries, iii) mandatory wearing of disposable face masks in all clinical settings, and iv) universal RT-PCR admission screening of patients. Main Outcome Measures: SARS-CoV-2 IgG seroconversion rate. Results: At the initial screening, ten participants displayed significant IgG antibody ratios. Another ten individuals showed seroconversion at the second time point one month later, only two further participants seroconverted during the subsequent two months. The overall SARS-CoV-2 seroprevalence in the study cohort at the last follow-up was 1.8%, the seroconversion rate dropped from 0.81% to 0.08% per month despite a longer observation period. Amongst HCWs seropositivity was increased in those directly involved in the care of patients with SARS-CoV-2 infections (3.8%, n=11) compared to other HCWs (1.4%, n=10, P=0.025). However, after the adoption of all multimodal infection control interventions seroconversions were observed in only two more HCWs, neither of whom were involved in inpatient care. Conclusion: Multimodal infection control and prevention interventions are highly effective in mitigating SARS-CoV-2 infections of healthcare professionals.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.14.20059733

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19 and is a severe threat to global health. Patients infected with SARS-CoV-2 show a wide range of symptoms and disease severity, while limited data is available on its immunogenicity. Here, the kinetics of the development of SARS-CoV-2-specific antibody responses in relation to clinical features and dynamics of specific B-cell populations are reported. Immunophenotyping of B cells was performed by flow cytometry with longitudinally collected PBMCs. In parallel, serum samples were analyzed for the presence of SARS-CoV-2-specific IgA, IgG, and IgM antibodies using whole proteome peptide microarrays. Soon after disease onset in a mild case, we observed an increased frequency of plasmablasts concomitantly with a strong SARS-CoV-2-specific IgA response. In contrast, a case with more severe progression showed a delayed, but eventually very strong and broad SARS-CoV-2-specific IgA response. This case study shows that determining SARS-CoV-2-specific antibody epitopes can be valuable to monitor the specificity and magnitude of the early B-cell response, which could guide the development of vaccine candidates. Follow-up studies are required to evaluate whether the kinetics and strength of the SARS-CoV-2-specific IgA response could be potential prognostic markers of viral control.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL